Что такое трансформатор и как его проверить
Практически в каждом устройстве работающем от сети 220 вольт находится трансформатор.
Что же такое трансформатор напряжения, что он из себя представляет и какие у него задачи?
Трансформатор по сути это устройство которое преобразует переменное напряжение и ток, повышая их или понижая, или же просто разделяя гальваническую связь в случае разделительного трансформатора.
Простейший трансформатор напряжения представляет из себя минимум две индуктивные обмотки провода (катушки) которые находятся на одном сердечнике из металлического сплава с электромагнитной проводимостью.
Работа трансформатора основывается на двух принципах:
- электромагнитная индукция — ЭДС (электродвижущая сила) которая возникает в обмотке под действием магнитного потока.
- электромагнетизм — магнитное поле которое возникает от действия электрического тока во времени.
На практике все это выглядит примерно так, на первичную обмотку поступает напряжение (220 вольт) при этом ток который проходит по первичной обмотке создает переменный магнитный поток в сердечнике который в свою очередь создает ЭДС индукции в вторичных обмотках и в них возникает ток со сдвигом в 90 градусов по отношению к основному магнитному потоку.
Трансформатор имеет три режима работы:
- Режим нагрузки — основной полезный режим работы когда вторичная обмотка трансформатора подключена к нагрузке через которую протекает ток.
- Холостой режим — в таком режиме вторичные цепи никуда не подключены и соответственно ток в них не протекает. Все токи которые протекают в первичной обмотке характеризуют КПД трансформатора и потери в сердечнике на холостом ходу.
- Режим КЗ — в результате замыкания вторичной обмотки возникает короткое замыкание. В таком режиме, с помощью специального сопротивления, можно измерить полезную мощность на нагрев проводов обмоток трансформатора
Также трансформаторы можно разделить на повышающие и понижающие, а также разделительные.
При помощи коэффициента трансформации подсчитывают отношение числа витков первичной обмотки к числу витков вторичной обмотки:
k = N1/N2
У понижающего трансформатора коэффициент трансформации всегда меньше единицы, а для повышающего трансформатора – больше.
Когда коэффициент трансформации — 1 и соответственно количество обмоток равное то такой трансформатор можно назвать разделительным, такими трансформаторами осуществляют гальваническую развязку, то есть на выходе, к примеру, можно получить те же 220 вольт но не один из выводов не будит иметь фазы и не будит нести опасности для человека по отношению к земли.
Электромагнитный сердечник
В низкочастотных трансформаторах сердечник выполнен из стали или пермаллоя (а не ферромагнетика) и не из цельного куска, а из отдельных пластин такое выполнение помогает уменьшить нагрев трансформатора в следствие вихревых токов Фуко.
Сердечники из пластин стягивают винтами или склеивают, но в последнее время их делают не разборными и просто сваривают точечной сваркой по углам собранного трансформатора.
Склеивают как правило очень маленькие трансформаторы, например в адаптерах зарядок и другой различной малогабаритной техники.
По форме сердечники могут быть несколько типов.
Наиболее встречающимся вариантом, в последнее время, есть Ш-образный сердечник, обмотки катушки располагаются в середине трансформатора.
Реже встречаются П-образные сердечники, обмотки в таком трансформаторе две и они располагаются по бокам сердечника.
Но важное правило — сердечник должен быть замкнутым то есть магнитный поток в нем также должен быть замкнутым что и достигается при подобных конструкциях.
Отличным вариантом замкнутого магнитного сердечника есть тороидальный трансформатор. Такие сердечники характеризуются меньшим рассеиванием магнитного потока и соответственно в итоге большим КПД.
Тороидальный сердечник представляет из себя кольцо (круг) из железа или стали, это может быть цельный метал, а может быть, зачастую это стальная лента свитая в кольцо и пропитана слоем лака что предотвращает пагубное действие токов Фуко.
Однако в тороидальных трансформаторов возникают трудности в намотке провода, для заводской намотки применяются специальные довольно сложные в своей конструкции станки где провод наматывается специальной «иглой» (веретеном), в домашних же условиях намотать такой трансформатор все же можно но достаточно сложно и трудоемко, особенно если провод толстый и предполагается большое количество витков.
В высокочастотных (импульсных) трансформаторах используют сердечники из цельного материала (или двух кусков). В качестве материала применяют ферромагнетик (феррит). Необходимой особенностью в таких случаях является то что феррит и альсифер могут работать на частотах выше сотни килогерц и обладает повышенным электромагнитным сопротивлением.
Во всех импульсных блоках питания компьютеров, ноутбуков, современных телевизоров, а также другой даже мелко габаритной электронике применяются исключительно высокочастотные трансформаторы с ферритовыми, как правило Ш-образными сердечниками.
Низкочастотные трансформаторы, в основном применяются в электротехнике, подстанциях, стабилизаторах напряжения, усилителях высокого класса и т. д.
Мощность и КПД трансформатора
Думаю всем логически понятно что чем больше габариты трансформатора тем больше его мощность и больший ток на вторичных обмотках можно снять при достаточной толщине их провода.
Мощные трансформаторы это трансформаторные подстанции которые занимают целые помещения, ну а трансформатор мощностью в пару ватт может поместится и на ладошке.
В случае с трансформаторами импульсных блоков питания, на ладошке может поместится и трансформатор мощностью в 500 ватт и больше.
Общая мощность трансформатора может разделятся между вторичными обмотками, но не вся мощность первичной обмотки передается во вторичные.
Малая доля общей мощности идет на нагрев сердечника, нагрев провода в обмотках, а также небольшая часть в виде магнитного потока просто рассеивается и не принимает участия в полезной трансформации.
КПД трансформатора — это коэффициент отношение мощности вторичной обмотки (P2) к первичной (P1), и как правило он всегда меньше 100%, а полное соответствие это идеал который не встречается в существующих трансформаторах но зависит от конструкции и используемого материала трансформатора.
КПД = P2 / P1
На практике больше габаритные трансформаторы имеют больше КПД нежели малогабаритные. Для примера трансформаторы на подстанциях имеют КПД порядка 98%, а маленькие 10-ватные трансформаторы могут иметь КПД даже ниже 70%!
Почему трансформатор греется
В трансформаторе греются как провода так и магнитный сердечник.
В правильно сконструированном трансформаторе нагрев будит незначительным. Но так как производители постоянно ищут способы сэкономить производство то уменьшается количество витков и габариты сердечника до рабочего минимума.
Такой трансформатор выполняет свои функции но при достижение максимальной мощности устройства которое питает такой трансформатор, будит происходить перегрев трансформатора при длительной его работе.
Где это необходимо, трансформаторы укомплектовывают термопредохранителем который крепится или к металлическому сердечнику или закладывается в слой изоляции первичной обмотки.
Термопредохранители применяют на температуру сработки до 130 градусов, большая температура может негативно сказываться на лаковой изоляции проводов катушки, кроме того возникает пожаронебезопасная ситуация.
Как проверить исправность трансформатора
Самая простая проверка трансформатора может быть с помощью мультиметра (тестера) в режиме измерения сопротивления. И конечно же запах «гари» и почерневшая изоляция обмоток будит свидетельствовать о дефекте и возможной поломке трансформатора.
Наиболее просто будит проверить малогабаритный низкочастотный трансформатор так как примерно известно сопротивление первичной обмотки (около 40-100 Ом).
Среднее значение сопротивления вторички с напряжением до 30 вольт можно взять примерное число до 20 Ом.
В высокочастотных импульсных трансформаторах сопротивление обмоток будут на много отличаться, и сопротивление первичной обмотки будит в основном зависит от параметров выходных ключей (транзисторов) и частоты генерации схемы блока питания.
В шырокораспространенных понижающих трансформаторах ток первичной обмотки не большой и потому применяют провод малого сечения. Во вторичной же обмотке в таком случае провод будит потолще (чем больше сердечник тем толще провод) но и как в случае с понижающим трансформатором — витков будит намного меньше нежели в первичной обмотке.
Чем толще провод — тем меньше его сопротивление. Потому мы можем быть уверены что для понижающего трансформатора сопротивление первичной обмотки для 220 вольт будит намного большим чем для вторичной.
Если в катушке одной из обмоток имеется обрыв провода данная обмотка покажет бесконечное сопротивление то есть не будит прозваниваться. В случае когда сопротивление обмотки очень маленькое, порядка 1-2 Ом то возникает подозрение на межвидковое замыкание.
Когда в трансформаторе есть несколько (вторичных) обмоток на разные напряжения как правило, то всех их проверяют по отдельности понимая что чем больше напряжение должно быть на выходе трансформатора — тем больше должно быть сопротивление данной обмотки провода.
Чтобы случайно не перепутать обмотки (первичную с вторичной) когда не понятно есть ли КЗ в обмотке, есть очень хороший способ запуска трансформатора от сети 220 вольт через лампочку накаливания (последовательно).
В данном случае при ошибке обмоток или при КЗ обмотка не перегорит так как лампочка возьмет всю нагрузку на себя и ярко засветится, об этом можно и судить о неисправности трансформатора.
Но лампочка должна быть заведомо мощнее трансформатора, кроме того снять большую нагрузку в таком подключение не получится, как только мощность нагрузки вторичной обмотки превысит мощность лампочки — нагрузку повысить не получится и лампочка будит светить в полный накал.